Characterizing a MEMS switch for High-speed SerDes Interfaces

Prof Eric Bogatin, University of Colorado, Boulder, Fellow, Teledyne LeCroy

About Teledyne LeCroy

. **TELEDYNE** LECROY Everywhere**you**look[™]

services

About the Presenter

Eric Bogatin Prof, University of Colorado, Boulder Fellow: Teledyne LeCroy Technical Editor, Signal Integrity Journal Dean, Teledyne LeCroy Signal Integrity Academy

- Physics: BS MIT '76 and PhD U of A Tucson, '80
- Senior management and engineering positions at Bell Labs, Raychem, Sun Micro, Ansys, Interconnect Devices Inc
- Started Bogatin Enterprises in 1992, created the Signal Integrity Academy, acquired by LeCroy in 2011. Teledyne LeCroy Fellow
- Full time Prof, ECEE dept University of Colorado, Boulder, since 2021, teaching signal integrity, PCB design, Capstone Senior Design Lab
- Author: 15 books, including popular textbooks and science fiction novels, monthly columns

Characterizing a MEMS switch for High-speed SerDes Interfaces

Prof Eric Bogatin (eric.bogatin@colorado.edu)

University of Colorado, Boulder https://www.colorado.edu/faculty/bogatin/

High Speed Digital Engineering Group

Agenda

- Changing out the cables in the Wave Pulser
- Reference Thru,
 - \checkmark w, wo terminated adjacent traces
 - ✓ SE response and XTK
 - \checkmark Diff Response, time and freq, mode conversion
 - \checkmark Self De-embedding the Thru ref
- Measuring the switch
 - ✓ SE response
 - ✓ de-embedding
 - ✓ Differential response
 - ✓ After de-embedding
- Open performance of the switch
- Using the switch S-parameters to emulate a channel
- Explore application space using behavioral model and system simulator
 - ✓ 10 Gbps NRZ
 - ✓ 28 Gbps NRZ
 - ✓ 32 Gbps NRZ
 - ✓ 64 Gbps PAM4

What is Menlo's Ohmic MEMS Switch?

- MEMS stands for Micro-ElectroMechanical System
- Miniaturized mechanical structure metal to metal contact
- Air gap between beam and contact is switched by electrostatic actuation
- Range of frequencies from DC to 70+ GHz
- Power handling capability from milliwatts to kilowatts

Implemented in Small Footprint Packages

A Simple, General-Purpose Eval Board

• Electronics board has USB interface to control the switches

High Speed Digital Engineering Group

WavePulser Uses a Simple Calibration Process

- No user calibration is required
- WavePulser turns on calibrated
 - ✓ Built in ecal establishes the reference plane to the front connectors of the WavePulser
 - ✓ Each cable has been measured with a WavePulser
 - ✓ S-parameter file of each cable is deembedded from all measurements

Wanted to Change out the Cables

- Shipped cables are short and rigid
- Want to use new cables that are long and flexible
 - ✓ Graciously donated by Junkosha USA and Packet Micro
 - ✓ Junkosha Cables MWX161

Simple process:

- Measure each cable
- Use these S-parameter files in the instrument set up

10

						10000
Setup	Calibration	Result Display	TDR/TDT	Result Actions	Instrument Setup	SP
Cables will only be de-embedded in Auto Calibration mode and when User De-embed Cables_ Second Tier calibration is disabled. Current Calibration mode is Auto.						
Port1	C:\LeCroy\W\	1907ac006.s2p 🚽	Browse			
Port2	C:\LeCroy\W\	1907ac008.s2p 🔟	Browse			
Port3	C:\LeCroy\W\	1907ac009.s2p 🔟	Browse			
Port4	C:\LeCroy\W\2	2307ac051.s2p 🖌	Browse			

Old and New Cables

Thru Connection Delays

Using low cost, \$1 SMA barrels

Port 1 \rightarrow 3 Port 2 \rightarrow 4

- Residual skew in delay of the thru cables is < 1 psec
- Important metric in p, n skew in differential measurements

The Menlo Micro MEMS Switch Fixture Board

Fixture reference board

Process

- Measure and evaluate 4-port S-parameters of Fixture board
 ✓ SE, impedance, losses, cross talk, p, n delay
 ✓ Diff: impedance, losses, mode conversion
- Measure and evaluate the fixture with MEMS switch

✓ SE, impedance, losses, cross talk, p, n delay

✓ Diff: impedance, losses, mode conversion

✓ De-embed using IEEE S-370 method: impedance corrected 2x Thru

 \checkmark Correct for the losses

• Use the SE .s4p S-parameters as a behavioral model to simulate any system performance

SE Response of the Fixture

 Virtually no cross talk- SE and diff response, of fixture will be the same

High Speed Digital Engineering Group

SE TDR Response

- What rise time to use?
- Default is 0.35/BW = 0.35/40G = 9 psec
 - ✓ Results in Gibbs ringing artifact
- Better rule of thumb is RT = 1/BW = 1/40 GHz = 25 psec

https://www.signalintegrityjournal.com/articles/2175 how-to-avoid-gibbs-ringing-artifacts-in-measurement-

Small Complication with the 2x Fixture: Asymmetry

Left-right asymmetry

p, n asymmetry

Time Delay Difference in p, n channels

@ 40 GHz, period is 25 psec, 10 psec is significant.

Differential Response

Drop in SDD21 from attenuation and from mode conversion @ 40 GHz, period = 25 psec, skew is 10 psec

Some end to end asymmetry, but not a problem

High Speed Digital Engineering Group

Observations

- In the fixture board:
 - ✓ Some line-to-line asymmetry
 - ✓ Some discontinuities from the connecto
 - ✓ Some interconnect attenuation
 - ✓ Some p, n line length contributing to mode conversion
- In the switch:
 - \checkmark Pay attention to the mode conversion
 - ✓ Pay attention to connector asymmetry
 - \checkmark Pay attenuation to the fixture attenuation

Controlling the Switch with the USB Interface

• Electronics board has USB interface to control the switches

Impact of the Package

J10 M 2825 J12 J11 J14 J13 C3 CC 23 55 Ω NEXT 0.5%/div 50 Q **45 Ω 40 Ω** SE TDR of the path through package and switch 35 Ω 30 🔁 0 ps 22 200 ps 400 ps 600 ps 800 ps 1 ns

Virtually uncoupled structure, SE and diff response will be the same

University of Colorado Boulder

SE S-Parameter Response

Impact on S21 from fixture losses

When S11 > - 10 dB, expect some impact on S21

Discontinuities in package at 22 GHz causes drop insertion loss to -10 dB

23

Differential Response

Mode conversion not significant in this board

Losses from the fixture board contribute to the insertion loss, in addition to package discontinuities

High Speed Digital Engineering Group

ONLY Export SE Behavioral Model to Use in System Simulation

Need to de-embed the connector launches and the losses in the board traces

SE With De-embedding to Remove the Losses

At 16 MHz, S21 goes from -3.5 dB to -1.5 dB

BW of the switch? As limited by the package: -5 dB BW is 20 GHz, -6 dB BW is 35 GHz

Expect ok performance at ~ 40 Gbps NRZ, maybe 80 Gbps PAM4

Application space: 32 Gbps NRZ PCIe gen 5

Using raw measurements

High Speed Digital Engineering Group

Application space: 32 Gbps NRZ (PCle gen 5)

Using DUT with fixture board losses de-embedded

64 Gbps PAM4 (PCle gen 6)

High Speed Digital Engineering Group

64 Gbps PAM4 (PCle gen 6)

Using DUT with fixture board losses de-embedded

High Speed Digital Engineering Group

Summary

- After-market upgrading WavePulser cables is very easy
- Understanding your fixture is very important
- Look at all the S-parameters available
- Take advantage of some of the special de-embedding features in the WavePulser software to optimize your DUT performance
- Extract single-ended S-parameters as the behavioral model for system simulation
- At 32 Gbps and above, everything matters. Like losses from traces in the fixture

 \checkmark Can make the difference between margin and pretty good

Thank you!

High Speed Digital Engineering Group