

MM9105-AC Rev. E

AC: 120V, 6A, SPST Power Relay Prototype

Product Overview

Description

The Menlo Microsystems MM9105-AC (Rev. E) SPST normally open Power Relay utilizes Menlo's Ideal Switch[™] devices to enable hot switching of AC loads of up to 120VRMS @ 6 ARMS. The MM9105-AC allows customers to evaluate Menlo's Ideal Switch technology for power electronics applications. It is intended for evaluation and prototyping purposes and is not qualified for high volume production.

The MM9105-AC utilizes MOSFET devices in parallel with a Menlo Ideal Switch to ensure zero-volt conditions across the MEM's during switch transitions (opening or closing). The parallel MOSFETs conduct only during switch transitions so that applications benefit from the exceptionally low on resistance, off-state capacitance and leakage, and the high reliability of Ideal Switch technology. Galvanic isolation is assured by isolation transformers for both the control and the power supply sections.

Features

- Zero-crossing switching minimizing transient currents
- Built-in programmable overcurrent protection
- Contact Rating 120 VACRMS @ 6 Amp
- Very low Ron 10 m Ω
- High Reliability > 1.0×10^9 Cycles
- Compact 88 mm X 60 mm X 21.4 mm
- 1 KV control-to-line side isolation

Applications

- Power Grid
- Renewable Energy
- **Process Control Industries**
- **Communications Lines**
- Light/Fan Dimming
- Motor Speed Control
- **Factory Automation**
- Uninterruptible Power Supply (UPS)

POWERED BY

ideal switch

Description

The block diagram of the MM9105-AC power relay is depicted in <u>Figure 1</u>. The MM9105-AC is a 5-terminal relay with 3 terminals (5 V, Ground and Switch Control) on the control side and 2 terminals on the line side (P6 – Line Side Load/Power, and P7 - Line Side Ground).

The relays consist of a Menlo Ideal Switch in parallel with MOSFET based voltage limiting circuits that prevent hot-switching damage to the Ideal Switch during on/off transitions. The MOSFETs are on very briefly during switch transitions to achieve near-zero voltage switching of the Ideal Switch.

Transformer-based isolation circuitry provides isolation of power and switch-state control from the line side.

Internal control of the MOSFETs is achieved with a micro controller that monitors the Ideal Switch carry current (monitors not shown in diagrams) and protects it from excessive current conditions.

Snubber circuits prevent voltage spikes when switching inductive loads.

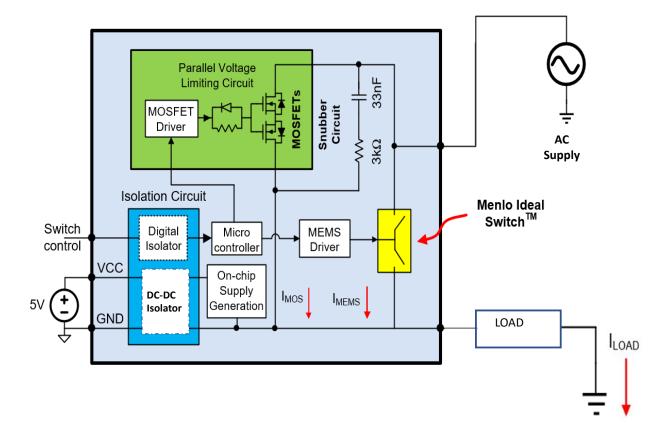


Figure 1. Block Diagram of AC Relay, MM9105-AC

Operating Characteristics

Absolute Maximum Ratings

Exceeding the maximum ratings as listed in <u>Table 1</u> may reduce the reliability of the device or cause permanent damage. Operation of the MM9105-AC should be restricted to the limits indicated in the recommended operating conditions listed in <u>Table 2</u>.

Electrostatic Discharge (ESD) Safeguards

The MM9105-AC is a Class 0 ESD device. The Ideal Switch load terminals are connected directly to the screw terminals of the relay and are thus subject to ESD-related damage. ESD mitigation procedures must be used when handling and setting up the Power Relay.

Table 1. Absolute Maximum Ratings¹

Parameter	Minimum	Maximum	Unit
Open State Voltage ²		120	V _{ACRMS}
Transient Voltage		300	VACPEAK
AC Current Rating (RMS, @25 °C)		6	А
Operating Temperature Range	-40	+85	٥C
Storage Temperature Range	-65	+150	٥C
Notes:			

Notes:

1. All parameters must be within recommended operating conditions.

2. This also applies to ESD events. This is a Class 0 device.

Table 2. Recommended Operating Conditions

Parameter	Minimum	Typical	Maximum	Unit
Operating Temperature Range	-40		85	°C
VCC Power Supply	4.5	5	6	V
Full Cycle Frequency				
Zero Crossing			10	Hz
Instantaneous Modes			50	Hz

Line-Side Specifications	Minimum	Typical	Maximum	Unit
Contact Ratings (R load)			6/120	A/V _{ACRMS}
On-board Snubber Capacitance (AC only)		0.033		μF
Snubber Resistance (AC only)		3000		Ω
Overcurrent Protection (Default Setting)		7.2		Apeak
On-State Resistance (R _{on})		10		mΩ
Off-State Leakage Current		75		uA
On/Off Switching Time ¹				
Instantaneous/Zero-Crossing mode On Time		1.50		msec
Instantaneous/Zero-Crossing mode Off Time		1.02		msec
Control to Line Side Isolation (1 minute)		1000		V
MM9105-AC Endurance ²				
No load		1B		Cycles
6 Amps – Zero-Cross switching		> 500K ³		Cycles
6 Amps – Instantaneous switching		> 200K ³		Cycles

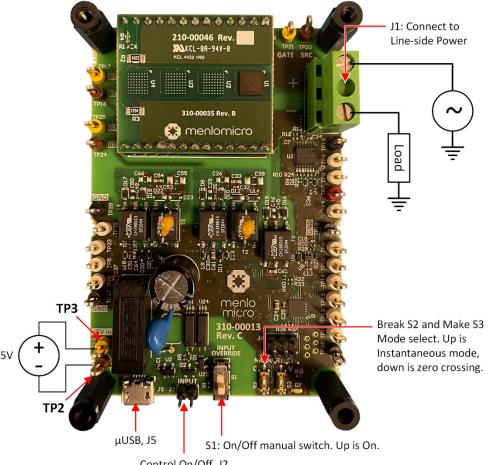
Table 3. Line-Side Operating Specifications

Notes:

1. Once zero crossing has been met.

2. Endurance testing in process. Initial results provided here.

3. No noticeable degradation in operating characteristics (10/50Hz, 50% Output Duty Cycle).



Parameter	Minimum	Typical	Maximum	Unit	
Control Input Thresholds	Control Input Thresholds				
VIH	0.7 x V_{cc}			V	
VIL			0.3 x V_{cc}	V	
Control Input Current (0 V \leq V _{IN} \leq V _{CC})	0		2	mA	
V _{cc} Supply Current					
Switch Off		150		mA	
Switch On		160		mA	

Table 4. Control-Side Operating Specifications

Operation

Control On/Off, J2

Figure 2. Photo of Relay Board (Top Side) with Typical Use Schematic

Operational Notes

The following operational notes refer to the relay board photo shown in Figure 2 above.

Relay State Control

6

Manual mode: Use slider switch S1 with up position for relay Closed (On) and down position for relay Open (Off). When using Manual mode to control the relay state, do not apply a control signal to J2 pin 1.

Electrical mode: Apply a 0V signal to J2 pin 1 for relay Closed (On) and a 5V signal for relay Open (Off). When using Electrical mode to control the relay state, S1 must be in the up position.

Power Supply

Relay control circuitry is powered with a 5 V power supply connected to TP3. Alternatively, the relay may be powered with a standard micro USB connector at J5. Use either TP3 to apply +5V power or power from USB, do not connect both at the same time.

Make Mode

When S3 is switched Off (up), instantaneous Make mode is selected. When S3 is switched On (down), zero voltage Make mode is selected, see <u>Table 5</u>.

Break Mode

When S2 is switched Off (up), instantaneous Break mode is selected. When S2 is switched On (down), zero crossing Break mode is selected, see <u>Table 5</u>. Switch positions are described with the relay board oriented as shown in <u>Figure 2</u> on page 6.

Switch	Control	Position	Action
S1	Relay state	Up	Relay Closed
		Down	Relay Open
S3	Relay Make Mode	Up	Instantaneous Make
		Down	Zero crossing Make
S2	Relay Break Mode	Up	Instantaneous Break
		Down	Zero crossing Break

Table 5. MM9105-AC Switch Descriptions

Overcurrent Protection

The microcontroller is programmed to protect the Ideal Switch devices and has an overcurrent protection mode that performs a controlled shutdown of the device at 120% of rated current. This value and the overcurrent protection sequence are programmable and can be changed by reprogramming the microcontroller.

Operating the Unit

- 1. Before connecting and applying power to the control or line side of the relay, make sure:
 - a. Switch S1 is in the down position so that the relay will be open when the control-side power is applied.
 - b. The relay is configured for the desired mode of operation as described in steps 2 and 3.
- 2. The MM9105-AC relay has two relay-make modes, instantaneous and zero-crossing as determined by the state of switch S3 (see <u>Table 5</u> on page 7).
 - a. Instantaneous Make mode: relay closes within approximately 1500 μ sec of a close command, independent of the voltage across the open relay.
 - b. Zero-crossing Make mode: relay control circuitry waits until the AC voltage present across the open relay is very close to zero volts before closing the relay.
- Similarly, two relay-break modes are available for opening the MM9105-AC relay, selected by the state of switch S2 (see <u>Table 5</u>).
 - a. Instantaneous Break mode: relay opens within approximately 1500 µsec of an open command, independent of the current through the closed relay.
 - b. Zero-crossing Break mode: relay control circuitry waits until the current through the closed relay is close to zero before opening the relay.
- 4. Before applying power to either the control side or the line side of the relay, first make sure that all control and line-side connections have been made.
- 5. Connect the ground terminal of a DC power supply capable of at least 200 mA to TP2. Connect pin 1 the positive terminal of the power supply to TP3.

Alternatively, the control side of the relay may be powered through the micro USB connector at J5 shown near the bottom left corner of <u>Figure 2</u> on page 6. **Do not apply both sources of power simultaneously, use one or the other exclusively.**

- 6. Connect J1 + terminal to the line-side power as shown in Figure 2.
- 7. Connect J1 terminal to the load as shown in Figure 2.
- 8. Turn on the control-side DC +5V power supply. The LED should turn on and the current from the supply should read about 150 mA.

Note: A lab bench supply with 200 mA current limit may trip falsely due to initial inrush current; therefore, it may be necessary to increase the current limit somewhat higher to avoid false trip.

- 9. Turn on the line-side supply.
- 10. The relay is ready for operation and will be in the open state (provided S1 is in the down Off position). The state of the relay may be controlled manually with switch S1 or electrically with a 5 V logic signal on J2 as described in <u>Table 5</u>.
- 8 © 2022-2023 Menlo Microsystems, Inc. All Rights Reserved January 6, 2023 www.MenloMicro.com

- a. Manual: switch S1 controls relay state with relay open when in down position and relay closed when in up position (board oriented as in Figure 2). Do not connect control signal to J2 when controlling the relay manually.
- b. Electrical: apply a 5 V logic control signal to J2 pin 1 with ground pin 2. When controlling the switch state electrically, switch S1 must be in the up position.

Turn-off Procedures

- 1. Open the relay:
 - a. If operating the relay state manually, slide switch S1 to the down position (board oriented as in Figure 2).
 - b. If operating the relay state electrically, drive signal on connector J2-1 high (5 V).
- 2. Turn the line-side power supply off.
- 3. Turn the control-side power supply off.

LED Behavior

Table 6. LED Behavior

LED Status	Description
LED Flashing at 1Hz	Relay is Open with or without Line Power.
LED ON	Relay is Closed with or without Line Power.
LED Flashing at 4Hz	Over-Current Protection is invoked.
LED OFF	Unit is not operational.

Test Points and Measurements

The PCB includes numerous test points with silk screen designations TP #. The more commonly used test points include additional naming such as GND or GATE. Refer to the electrical schematic to identify the test point and its corresponding net.

Note: Exercise care when performing measurements on test points using lab equipment because the electrical design consists of multiple levels of isolation which must not be electrically shorted.

Referring to the schematic, INP_GND (associated with the 5V control side) is isolated from GND (associated with the relay control circuits and load-side J1 – terminal). In addition, the MOSFET GATE/SRC and both Ideal Switch banks G1/B1 and G2/B2 are isolated from each other and GND. Single-ended measurements performed using a multi-channel oscilloscope risk electrical shorts from the shared channel ground.

When connecting to GND for reference, single ended measurements should normally be made only to test points referenced to the GND domain. Differential probes are required to observe isolated nets including MOSFET SRC/GATE and Ideal Switch G1/B1 and G2/B2.

When performing lab measurements on the AC board, the load-side AC supply must be isolated from the power grid to avoid risk of electrical shock and damage to lab equipment.

Table 6 lists commonly used test points.

10

ТР	Name	Type or Ref	Description	
21,20 ¹	GATE/SRC	Differential	MOSFET gate to source voltage	
17,16¹	G1/B1	Differential	Ideal Switch bank 1 Gate to Body	
25,24 ¹	G2/B2	Differential	Ideal Switch bank 2 Gate to Body	
1	ON/OFF INPUT	GND	Manual control (S1): relay ON (high) or OFF (low) Electrical control (J2): relay ON (low) or OFF (high)	
none	J1 + Terminal	GND	Voltage across relay, noting that GND is J1 – terminal	
10	ZVC	GND	Zero voltage crossing detector	
6	ZCC	GND	Zero current crossing detector	
4	OCP	GND	Analog overcurrent protection signal	
5	5V PWR GOOD	GND	Control-side 5V input OK active low	
Notes:				
1. Refrain from connecting probes to these test points when subjecting the device under cycling conditions.				

Table 6. Commonly Used Test Points

MM9105-AC Test Results

Test results were performed on the 9105-AC under two conditions:

- Steady state operation
- Make and Break operation captured by an oscilloscope for both instantaneous and zero-cross switching

Steady State Measurements of On Resistance and Thermal Characteristics

Steps 1 through 10 stated in <u>Operating the Unit</u> on page 8 were followed using low-value, high-power load resistors with an adjustable, line-side AC power supply capable of putting out more than 6 Amps. The following measurements were made as the line-side supply was increased incrementally to achieve 1-to-6 Amps of load current:

- Voltage drop across the relay terminals (J1+ to J1-)
- FLIR camera thermal imaging of a relay at each load current value

Load Testing and Ron Measurement for MM9105-AC (-40°C, 25°C, +85°C)

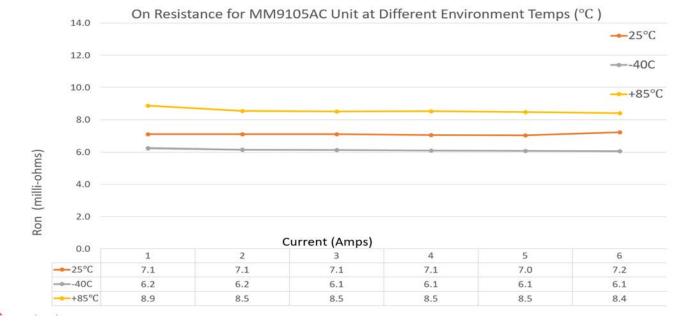
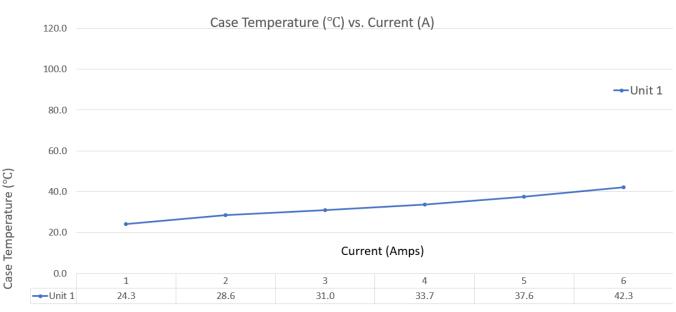
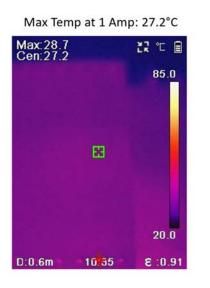



Figure 3. MM9105-AC On-resistance vs Current



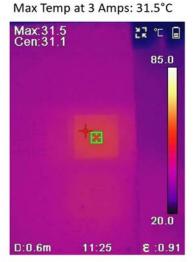

Load Testing and Case Temperature Measurement for MM9105-AC Unit

Figure 4. MM9105-AC Case Temperature vs. Current

Thermal Image of MM9105-AC Rev E Daughter Board at Room Temperature

12

Max:43.6 Cen:43.0 22 °C 🔒 85.0 20.0 D:0.6m 11:45 E :0.91

Max Temp at 6 Amps: 43.6°C

Red Crosshair – Max Temp

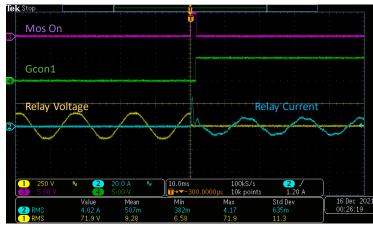
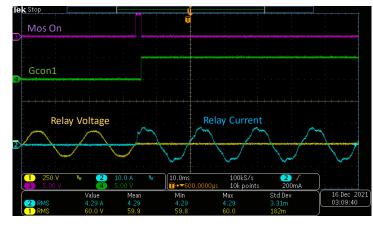

Green Crosshair - Center Temp

Figure 5. FLIR Camera Thermal Images of Power Relay at Varying Currents

MM9105 - AC: 120V, 6A, SPST Power Relay Prototype Preliminary Datasheet v2.1

AC In-Rush Current Test Results

AC Relay Inrush Current Test with 5A Continuous Current Operation (Instantaneous mode)



Mos On: MOSFET Gate Drive Signal Gcon1: Ideal Switch Gate Drive Signal Load: 10 Ohm load with 60 μF capacitor

Load defined as: 10 Ohm resistive Load with 60 μF Capacitor

Zero Crossing Mode does not produce inrush current spike

• With 25 Amp Peak Inrush Current

AC Relay Inrush Current Test with 5A Continuous Current Operation (Zero Crossing Mode)

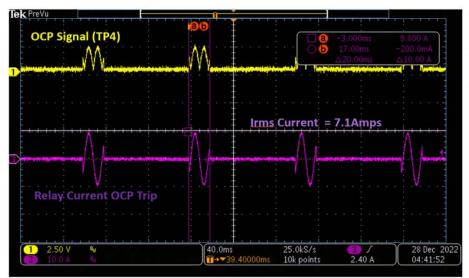

Mos On – MOSFET Gate Drive Signal Gcon1 – Ideal Switch Gate Drive signal

Figure 6. MM9105-AC Inrush Current Test Results

MM9105 - AC: 120V, 6A, SPST Power Relay Prototype Preliminary Datasheet v2.1

AC Overcurrent Protection (OCP) Test Results

MM9105-AC Relay: Over Current Protection

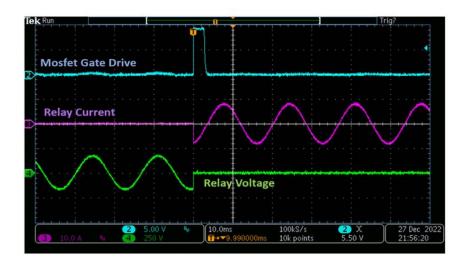
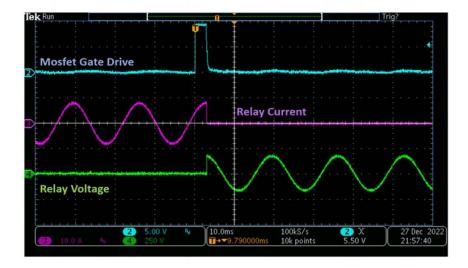

- AC relay has OCP set at 7.2A rms
- Vp divided by $\sqrt{2}$ to get RMS OCP
- Current Measured: Peak Current = 10A Irms = 10A/(1.414) = 7.1Arms

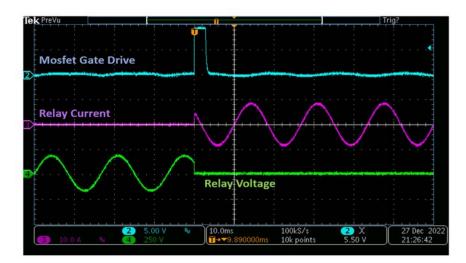
Figure 7. MM9105-AC OCP Test Results

Operation of MM9105-AC


Using a 20Ω load resistor and a 60 Hz AC power supply set to 125 VRMS, an oscilloscope was used to capture operation of a MM9105-AC relay switching 6 ARMS. Figure 8 captures the make transition, and Figure 9 captures the break transition. In the instantaneous switching mode. Switches S2 and S3, which controls the relay switching modes, were both switched to the up position (see <u>Table 5</u> on page 7). The waveform at the hot-switch protection MOSFETs is also displayed.

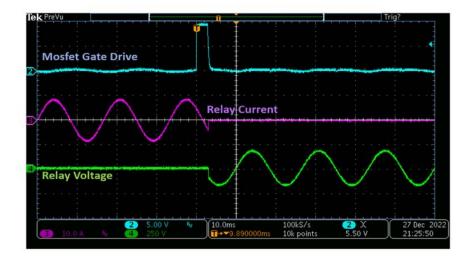
MM9105-AC, Make Operation (Instantaneous Mode)

Figure 8. MM9105-AC Relay Instantaneous Make Transition at 125 V_{RMS}, 6 A_{RMS} Load



MM9105-AC, Break Operation (Instantaneous Mode)

Figure 9. MM9105-AC Relay Instantaneous Break Transition at 125 V_{RMS}, 6 A_{RMS} Load


To observe operation in the zero-cross switching mode, switches S2 and S3 were both switched to the down position (<u>Table 5</u> on page 7). Figure 10 shows the make transition, and <u>Figure 11</u> shows the break transition. The waveform at the hot-switch protection MOSFETs is also displayed.

MM9105-AC, Make Operation (Zero Crossing Mode)

Figure 10. MM9105-AC Relay Operating in the Zero-cross Switching Mode, Showing the Make Transition while Switching a 60 Hz, 125 V_{RMS} , 6 A_{RMS} Load

MM9105-AC, Break Operation (Zero Crossing Mode)

Figure 11. MM9105-AC Relay Break Transition in Zero-cross Mode, Switching a 60 Hz, 125 V_{RMS} , 6 A_{RMS} Load

Important Information

Disclaimer

The data presented in this document is for informational purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Any warranty or license for this product shall be specified and governed by the terms of a separate purchase agreement. Menlo Micro does not assume any liability arising out of the application or use of this product; neither does it convey any license under its patent rights, nor the rights of others.

Menlo Micro reserves the right to make changes in these specifications and features shown herein to improve reliability, function, and design; or to discontinue this product at any time without notice or obligation. Contact our product representative for the most current information.

Warning

This product is not authorized for use:

- In any life support systems.
- Applications for implanting into the human body, without the express written approval from Menlo Micro.

Trademark Notices

All trademarks and product service marks are owned by Menlo Microsystems, Inc.

Contact Information

Please contact Menlo Micro for the latest specifications, additional product information, test and evaluation boards, product samples, worldwide sales and distribution locations:

Internet: <u>www.menlomicro.com</u> E-mail: <u>sales@menlomicro.com</u>

For product technical questions and application information: <u>support@menlomicro.com.</u>