PRELIMINARY PRODUCT BRIEF

# MM9200 SPST Power Switch 



The MM9200 is a high-power SPST micro-electromechanical switch. The innovative Ideal Switch $®$ technology enables highly reliable micro-electromechanical switches capable of carrying high voltage and high current in a small form factor.

The MM9200 provides ultralow on-state resistance, low leakage current and high voltage stand-off, with greater than 100 million switching cycles. Because of its long lifetime, extremely low current consumption, and small form factor, the MM9200 is an ideal solution for replacing electromechanical relays, as well as solid-state switches such as IGBT and MOSFETs where size, weight, power efficiency and thermal management are critical system-level design parameters.

FIG. 1 MM9200 Functional Block Diagram


Ti ideal switch

## FEATURES

- Low On-State resistance $8 \mathrm{~m} \Omega$ (typ.)
- Voltage standoff (AC PK or DC ): 300V
- Rated continuous current ( $\mathrm{AC}_{\text {RMS }}$ or DC ): 10A
- Fast switching time ( $10 \mu \mathrm{~s}$ to open, $10 \mu \mathrm{~s}$ to close)
- High mechanical endurance: 100 million operations
- QFN low-profile $6.5 \mathrm{~mm} \times 6.0 \mathrm{~mm}$ Package


## APPLICATIONS

- LV industrial controls
- Solid State Relay replacement
- Electromechanical Relay replacement


## MARKETS

- Industrial automation
- Sustainable buildings
- Transport electrification
- Infrastructure modernization
fig. 2 RON vs Load Current
On-State Resistance vs Load Current

fig. 3 Case Temperature vs Load Current
Case Temperature vs Load Current

table 1 DC and AC Electrical Specifications

| Parameter | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| On-State Contact Resistance |  | 8 | 10 | $\mathrm{~m} \Omega$ |
| Off-State Contact <br> Leakage Current |  | 5 |  | pA |
| Continuous Current |  |  | 10 | $\mathrm{~A}\left(\mathrm{AC}_{\text {RMs }} / \mathrm{DC}\right)$ |
| Gate Bias Current |  | 1 | 10 | nA |
| Capacitance <br> Off-State, INPUT to OUTPUT pin |  | 3.4 |  | pF |
| Switching Time |  |  |  |  |
| On/Off |  |  |  |  |$\quad$| Mechanical Endurance |  | $100 \times 10^{6}$ |  |
| :--- | :--- | :--- | :--- |
| Standoff Voltage |  |  | 300 |



FIG. 5 MM9200: 2P1S Low Temperature Rise at 5A with 2.6 mohm


FIG. 6 MM9200: 3P1S Low Temperature Rise at 5A with 1.8mohm


